

Global GreenTagEPD Program: Compliant to EN15804+A2 2019

Xypex Chemical Corporation

Xypex Modified

13731 Mayfield Place Richmond British Columbia Canada

Xypex Modified EPD XYP03 2023EP

Mandatory Disclosures

☑ External

EPD typeCradle to grave A1 to C4 + DEPD NumbersXYP032022EPIssue Date07 March 2023Valid Until07 March 2028

Demonstration of Verification

Standard EN 15804+A2 2019 serves as core Product Category Rules (PCR) [1].

Sub-PCR UCM:2023 Unreinforced Concrete Mixtures and Additives also applies [2].

LCA Developed by Delwyn Jones, The Evah Institute

☑ Internal 08Feb2023 LCA Reviewed by Direshni Naiker The Evah Institute

EPD Reviewed by David Baggs, Global GreenTag Pty Ltd

Third Party Verifier Mathilde Vlieg Malaika LCT

a. Independent external verification of the declaration and data, mandatory for

business-to-consumer communication according to ISO 14025:2010 [2].

Communication This EPD discloses potential environmental outcomes compliant with EN 15804 for

business-to-business communication.

Comparability

Comparability

Comparability

Comparability

Construction product EPDs may not be comparable if not EN15804 compliant.

Comparability

on the product category rules and data source used.

Reliability LCIA results are relative expressions that do not predict impacts on category

endpoints, exceeding of thresholds, safety margins or risks.

Owner This EPD is the property of the declared manufacturer.

Explanations Further explanatory information is available at info@globalgreentag.com or by

contacting certification1@globalgreentag.com [3].

EPD Program Operator LCA and EPD Producer Declaration Owner

Global GreenTag Pty Ltd Ecquate Pty Ltd Xypex Chemical Corporation
PO Box 311 Cannon Hill PO Box 123 Thirroul 13731 Mayfield Place,

QLD 4170 Australia NSW 2515 Australia Richmond BC Canada

Phone: +61 (0)7 33 999 686 Phone: +61 (0)7 5545 0998 Phone: +1 604.273.5265 http://www.globalgreentag.com http://www.evah.com.au https://www.xypex.com/

GLOBAL CONCRETE CONCRETE Solutions

building ecopositive

Page 2 of 14

Program Description EPD type Cradle to grave A1 to C4 + D as defined by EN 15804 [1] The system boundary with nature includes material and energy acquisition, processing, **System** boundary manufacture, transport, installation, use plus waste arising to end of life. Stages A1-3 A4-5, B1-4, C1 to C2 and C4 D1 to D3 Stages included Stages excluded No stage was excluded but flows and results for B5-B7 and C3 were all zero. Figure 1 depicts all modules being declared including some with zero results. Any **Scope Depiction** module not declared (MND) does not indicate a zero result. Model Actual Scenarios Potential

Information		Building Life Cycle Assessment							Sup	plen	nentary								
Stages									Us	se							Be	enefit	t & load
Data Modules	Product		Product Con		struct		F	abri	ic		Ope	ration		End-	of-Life	9			system
Unit Operations	A1	A2	А3	A4	A5	B1	B2	ВЗ	B4	B5	В6	В7	C1	C2	C3	C4	D1	D2	D3
Cradle to Gate+ Options & Grave	Resource	Transport	Manufact-	Transport	Construct	Use	Maintain	Repair	Replace	Refurbish	Energy use	Water use	Demolish	Transport	Process Waste	Disposal	Reuse	Recovery	Recycling

Figure 1 EPD Life Cycle Modules Cradle to Grave

Data Sources

Primary Data	Data was collected from primary sources 2019 to 2022 including the manufacturer and suppliers' standards, locations, logistics, technology, market share, management system in accordance with EN ISO 14044:2006, 4.3.2, [4]. All are biochemical-physical allocated none are economically allocated.
A1-A3 Stage inclusions	Operations include all known raw material acquisition, refining and processing plus scrap or material reuse from prior systems; electricity generated from all sources with extraction, refining & transport plus secondary fuel energy and recovery processes. Also, transport to factory gate; manufacture of inputs, ancillary material, product, packaging, maintenance, replacement plus flows leaving at end-of-waste boundary and fates of all flows at end of life.
Variability	Significant differences of average LCIA results are declared.
Chemicals of Concern	Contains no substances in the European Chemicals Agency "Authorised or Candidate Lists of Substances of Very High Concern (SVHCs)".

Data Quality

Data cut-off & quality criteria complies with EN 15804 [1] The LCA used background data aged <10 years and quality parameters tabled below.

Background	Data Quality	Parameters and Uncer	Parameters and Uncertainty (U)					
Correlation	Metric σg	U ±0.01	U ±0.05	U ±0.10	U ±0.20			
Reliability	Reporting	Site Audit	Expert verify	Region	Sector			
	Sample	>66% trend	>25% trend	>10% batch	>5% batch			
Completion	Including	>50%	>25%	>10%	>5%			
Completion	Cut-off	0.01%w/w	0.05%w/w	0.1%w/w	0.5%w/w			
Tomporol	Data Age	<3 years	≤5 years	<7.5 years	<10 years			
Temporal	Duration	>3 years	<3 years	<2 years	1 year			
Technology	Typology	Actual	Comparable	In Class	Convention			
Geography	Focus	Process	Line	Plant	Corporate			
	Range	Continent	Nation	Plant	Line			
	Jurisdiction	Representation is Global	Representation is Global. Africa, North America, Europe, Pacific Rim					

Page 3 of 14

Product Information

This coating provides concrete structures waterproofing, chemical resistance, protection and improvement. It is applied as a cementitious slurry to the pre-saturated surface of existing above and below grade structures.

The active chemicals diffuse into the substrate and catalytically react with moisture and constituents of hard concrete that forms insoluble crystals throughout concrete pores, capillary tracts and cracks, permanently sealing them preventing liquid penetration from any direction, even under high hydrostatic pressure.

The coating is alkaline and may cause significant skin and eye irritation and health and safety information for the protection of workers and customers is in Manufacturer Safety Data Sheets

Brand Name & Code	Modified	Range Names	Xypex Coating			
Factory warranty	One year	Reference Service Life	60 years [5,6]			
Manufacturer	Xypex Chemical Corpo	oration				
Manufacturer address	13731 Mayfield Place,	13731 Mayfield Place, Richmond British Columbia, Canada				
Site representation	Canadian and American					
Function in Building	Repair mortar for patching and resurfacing of deteriorated concrete					
Functional unit	Cradle to grave concrete repair, remedial & waterproofing/kg 60years					
Safety Procedures	https://www.xypex.com/technical/safety-data					
Specifications	https://www.xypex.com/technical/specifications					
Practices Reference	https://www.xypex.com/technical/statements					
Installation Procedure	https://www.xypex.com/products/installations					

Product Components

This section summarises factory components, functions, source nation and % mass share. In product content listed below the % mass has a $\pm 5\%$ range and a confidence interval that is 90% certain to contain true population means at any time.

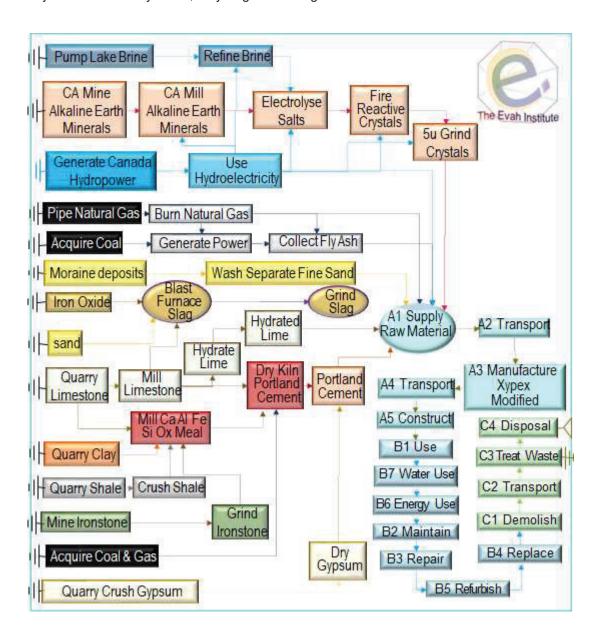
Listing such 90±5% certainty considers normal resource acquisition, supply chain, sedimentation, seasonal, manufacturing and product variation over this EPD's validity period. This also allows for intellectual property protection whilst ensuring fullest possible transparency.

Function	Component	Cradle	Amount
Aggregate	Moraine sand	Canada	>30 <40
Cement binder	Portland Cement	Canada	>30 <40
Crystalline waterproofing	Base mix	Canada	>15 <25
Hydration	Hydrated Lime	Canada	>5 <15
Packaging			
Pallet wood	Wood	Canada	>1.5 <2.0
Pail, Straps, Wrap & Tape	Polymers	Canada	>0.4 <0.5
Packaging	Cardboard and paper	Canada	>0.2 < 0.3

Product Functional & Technical Performance Information

This section provides specifications and data to calculate results factoring different mass and period. For normal surface conditions, the coverage rate for per coat is 1.25 to 1.5 pounds/square yard or 0.65 - 0.8 kg/m².

s Page 4 of 14



System Analysis Scope and Boundaries

Stages A1 to 3 model actual operations. Stage A4 to C4 are model scenarios.

Typical scenarios are assumed to forecast unit operations as described in the next section.

Figure 2. shows included processes in a cradle to grave system boundary to end of life fates to unshown beyond the boundary reuse, recycling or landfill grave.

Figure 2. Product Process Flow Chart

Page 5 of 14

Scenarios for Modules (Units/Functional Unit)

This section defines modelling scenarios beyond actual A1 to A3 operations from stage A4 to D3.

A Construction	Type specified	Amount	Type specified	Amount
A4 Transport to Site	25t semi-trailer	60 km	85% Capacity	Full back load
Volume capacity (<1 to ≥1)	Utilisation factor	1	Uncompressed	Un-nested
A5 Installation utilities	Town water	0.53litre	Grid power	0.0002 MJ
Waste on site	Spill	0.05kg		
Scrap collection & routes	25t semi-trailer	60 km	to landfill	In LCA report

Stage B2 and B3 scenarios are listed below. Stages B1 Use of building fabric, B4 Replacement, B5 Refurbishment, B6 Building Operating Energy and B7 Building Operating Water all have zero flows.

B Building	Type specified	Amount	Type specified	Amount
B2 Maintenance	None typical	nil	Clean cycle	nil
B3 Repair 5%	As per website	Specified	Freight to site	As A5

Stage C1, C2 and C4 scenarios are listed below. Stage C3 Waste Treatment has zero flows.

C End of Life	Type specified	Amount	Type specified	Amount
C1 Demolition	Remove worn area	0.40kg	Collect separately	0.40kg
C2 Transport	25t truck road	50km	85% capacity	No back load
C4 Disposal	Product specific	0.40kg	Collect separately	0.40kg
Recovery system	No recycling	0.0 kg	Not for energy	0.0 kg

Stage D scenarios D1 Reuse and D2 Recovery are listed below. D3 Recycling has zero flows.

D Beyond System Boundary	Type specified	Amount	Type specified	Amount
D1 Reuse	typically	95%	Patch 5%	0.05kg
D2 Recovery	typically	100%	Cleaning	sweep
D3 Recycle	At 60 years	Nil	None	0%

Page 6 of 14

Environmental Impact Terminology

Environmental impacts contributing to risks of social and ecological issues and collapse are tabled below with common names and remedies given for each indicator.

Global warming forcing Climate Change	Greenhouse gases absorb infra-red radiation. This heat reduces thermal energy differentials, from equator to poles, forcing ocean current and wind circulation to blend and regulate climate. Weakly blended "lumpier" weather has more frequent, extreme heat wave, fire-storm, cyclone, rain-storm, flood and blizzard events. Accumulation of carbon dioxide, natural gas methane, nitrous oxides and volatile organic compounds from burning fossil fuels causes global warming. Forest and wilderness growth absorbing air-borne carbon in biomass can drawdown such accumulation. Urgent renewable energy reliance is vital in time to avoid imminent tipping points and the worsening "climate emergency".
Ozone layer depletion	Stratospheric ozone loss weakens the planet's solar shield so more shorter wavelength ultraviolet (UVB) light reaching earth damages plants and increases malignant melanoma and skin cancer in humans and animals. Chlorofluorocarbons, hydrochlorofluorocarbons (HCFC), chlorobromomethane, hydrobromofluorocarbons, carbon tetrachloride, methyl chloroform, methyl bromide and halon gas cause ozone layer loss. To repair the "ozone hole" reliance on ozone-safe refrigerants, aerosols and solvents is essential to avoid further its depletion and enable accumulation of naturally-formed ozone.
Acidification	Acidification reduces soil and waterway pH, impedes nitrogen fixation vital for plant growth and inhibits natural decomposition. It increases rates and incidence of fish kills, forest loss and deterioration of buildings and materials. Chief synthetic causes of "acid rain" are emissions of sulphur and nitrogen oxides, hydrochloric and hydrofluoric acids and ammonia from burning fossil fuels polluting precipitation of rain and snow world-wide.
Eutrophication of terrestrial, freshwater and marine life	Eutrophication from excessively high macronutrient levels added to natural waters promotes excessive plant growth that severely reduces oxygen, water and habitat security for aquatic and terrestrial organisms across related ecosystems. Chief synthetic cause of " <i>algal blooms</i> " is nitrogen (N, NOx, NH ₄) and phosphorus (P, PO ₄ ³⁻) in rain run-off over-fertilised land catchments.
Photochemical ozone creation	Tropospheric photochemical ozone, called "summer smog" near ground level, is created from natural and synthetic compounds in UV sunlight. Low concentration smog damages vegetation and crops. High concentration smog is hazardous to human health. Chief synthetic causes are nitrogen oxides, carbon monoxide and volatile organic compounds (VOC) pollutants. Avoiding reliance on dirtiest coal fuel and volatile chemicals has reduced smog incidence in many areas globally.
Depletion of minerals, metals & water	Abiotic depletion of finite mineral resources increases time, effort and money required to obtain more resources to the point of extinction of naturally viable reserves. This can limit access to available, valuable and scarce elements vital for human-life. The youth movement "extinction rebellion" calls on adults to secure climate, material reserves and biodiversity for current and future generations.
Depletion of fossil fuel reserves	Abiotic depletion of resources by consuming finite oil, natural gas, coal and yellowcake fossil fuel reserves leaves current and future generations suffering limited available, accessible, plentiful, essential valuable as well as scarce raw material, medicinal, chemical, feedstock and fuel stock. Approaching "peak oil" acknowledged fossil fuel reserves are finite and the need for decision-makers to act to avoid market instability, insecurity and or oil and gas wars.

Page 7 of 14

Glossary of Terms, Methods and Units

Acronyms, methods and units of impact potentials plus inventory inputs and outputs, are defined below

Acronyms, methods and units of impact	potentials p	lus inventory inputs and outputs, are d	efined below
Impact Potentials	Acronym	Description of Methods	Units
Climate Change fossil	GWP ff	GWP fossil fuels [7]	$kg\ CO_{2eq}$
Climate Change biogenic	GWP bio	GWP biogenic [7]	kg CO _{2eq}
Climate Change Iuluc (landuse)	GWP luluc	GWP land use & change [7]	kg CO _{2eq}
Climate Change total	GWP t	Global Warming Potential [7]	kg CO _{2eq}
Stratospheric Ozone Depletion	ODP	Stratospheric Ozone Loss [8]	kg CFC _{11eq}
Photochemical Ozone Creation	POCP	Summer Smog [9]	kg NMOC _{eq}
Acidification Potential	AP	Accumulated Exceedance [10]	mol H ⁺ eq
Eutrophication Freshwater	EP fresh	Excess nutrients freshwater [11]	kg P eq
Eutrophication Marine	EP marine	Excess marine nutrients [11]	kg N _{eq}
Eutrophication Terrestrial	EP land	Excess Terrestrial nutrients [11]	mol N _{eq}
Mineral & Metal Depletion	ADP min	Abiotic Depletion minerals [12]	kg Sb _{eq}
Fossil Fuel Depletion	ADP ff	Abiotic Depletion fossil fuel [13]	MJ _{ncv}
Water Depletion	WDP	Water Deprivation Scarcity [14, 15]	$m^3 {\text{WDP eq}}$
Fresh Water Net	FW	Lake, river, well & town water	m^3
Secondary Material	SM	Post-consumer recycled (PCR)	kg
Secondary Renewable Fuel	RSF	PCR biomass burnt	MJ_{ncv}
Primary Energy Renewable Material	PERM	Biomass retained material	MJ nev
Primary Energy Renewable Not Feedstock	PERE	biomass fuels burnt	MJ _{nev}
Primary Energy Renewable Total	PERT	Biomass burnt + retained	MJ nev
Secondary Non-renewable Fuel	NRSF	PCR fossil-fuels burnt	MJ_{ncv}
Primary Energy Non-renewable Material	PENRM	Fossil feedstock retained	MJ _{nev}
Primary Energy Non-renewable Not Feedstock	PENRE	fossil-fuel used or burnt	MJ _{nev}
Primary Energy Non-renewable Total	PENRT	Fossil feedstock & fuel use	MJ nev
Hazardous Waste Disposed	HWD	Reprocessed to contain risks	kg
Non-hazardous Waste Disposed	NHWD	Municipal landfill facility waste	kg
Radioactive Waste Disposed	RWD	Mostly ex nuclear power stations	kg
Components For Reuse	CRU	Product scrap for reuse as is	kg
Material For Recycling	MFR	Factory scrap to remanufacture	kg
Material For Energy Recovery	MER	Factory scrap use as fuel	kg
Exported Energy Electrical	EEE	Uncommon for building products	MJ _{ncv}
Exported Energy Thermal	EET	Uncommon for building products	MJ _{ncv}

Page 8 of 14

Module A1 to D4 Results Cradle to Site

Table 1 shows A1Resource Acquisition, A2 Transport, A3 Manufacture, A4 Delivery, A5 Construct results.

Table 1 A1 to A5 Impact & Inventory Results/Functional Unit

Table 1 A1 to A5 Impact & Inventory Results/Funct	ional Unit		
Result	A1-3	A4	A5
Climate Change biogenic	-8.5E-03	-1.0E-06	-4.3E-04
Climate Change Iuluc (landuse)	3.4E-06	1.7E-09	1.7E-07
Climate Change fossil	0.95	1.9E-02	5.1E-02
Climate Change total	0.95	1.9E-02	5.1E-02
Stratospheric Ozone Depletion	1.6E-08	1.7E-13	8.0E-10
Photochemical Ozone Creation	4.1E-03	1.2E-04	2.3E-04
Acidification Potential	2.0E-03	1.2E-05	1.0E-04
Eutrophication Freshwater	4.7E-08	5.6E-10	9.8E-09
Eutrophication Marine	4.5E-04	2.3E-06	2.4E-05
Eutrophication Terrestrial	1.1E-03	7.9E-06	5.8E-05
Fossil Depletion	0.43	2.3E-02	2.4E-02
Mineral and Metal Depletion	3.1E-04	7.2E-06	1.7E-05
Water Scarcity Depletion	1.1E-02	3.0E-06	5.8E-04
Net Fresh Water Use	71	0.02	3.6
Secondary Material	2.4E-02	2.9E-06	1.1E03
Secondary Renewable Fuel	7.6E-03	6.7E-06	4.1E-04
Primary Renewable Material	5.9E-02	2.4E-03	3.1E-03
Primary Energy Renewable Not Feedstock	1.4	2.9E-04	6.5E-02
Primary Energy Renewable Total	1.5	2.7E-03	6.9E-02
Secondary Non-renewable Fuel	8.4E-03	7.4E-04	5.2E-04
Primary Energy Non-renewable Material	1.0	0.11	0.06
Primary Non-renewable Energy Not Feedstock	6.5	0.19	0.36
Primary Energy Non-renewable Total	7.5	0.30	0.42
Hazardous Waste Disposed	2.8E-04	3.7E-05	1.6E-05
Non-hazardous Waste Disposed	0.10	3.1E-04	5.5E-02
Radioactive Waste Disposed	3.0E-16	1.1E-31	1.5E-17
Components For Reuse	0	0	0
Material For Recycling	9.7E-03	6.5E-06	5.8E-03
Material For Energy Recovery	1.6E-04	2.3E-07	6.9E-06
Exported Energy Electrical	0	0	0
Exported Energy Thermal	0	0	0

Page 9 of 14

Xypex Modified EPD XYP03 2023EP

Results Module B: Building Fabric and Operations

Table 2 shows B3 Repair results. Zero in B1 Use, B2 Maintain, B4 Replace, B5 Refurbish, B6 Energy Use, B7 Water Use

Table 2 B1 to B7 Impact & Inventory Results/Functional Unit

Result	B1	B2	В3	B4	B5	B6	B7
Climate Change biogenic	0	0	-4.3E-04	0	0	0	0
Climate Change Iuluc (landuse)	0	0	1.7E-07	0	0	0	0
Climate Change fossil	0	0	5.1E-02	0	0	0	0
Climate Change total	0	0	5.1E-02	0	0	0	0
Stratospheric Ozone Depletion	0	0	8.0E-10	0	0	0	0
Photochemical Ozone Creation	0	0	2.3E-04	0	0	0	0
Acidification Potential	0	0	1.0E-04	0	0	0	0
Eutrophication Freshwater	0	0	9.8E-09	0	0	0	0
Eutrophication Marine	0	0	2.4E-05	0	0	0	0
Eutrophication Terrestrial	0	0	5.8E-05	0	0	0	0
Fossil Depletion	0	0	2.4E-02	0	0	0	0
Mineral and Metal Depletion	0	0	1.7E-05	0	0	0	0
Water Scarcity Depletion	0	0	5.8E-04	0	0	0	0
Net Fresh Water Use	0	0	3.6	0	0	0	0
Secondary Material	0	0	1.1E-03	0	0	0	0
Secondary Renewable Fuel	0	0	4.1E-04	0	0	0	0
Primary Renewable Material	0	0	3.1E-03	0	0	0	0
Primary Energy Renewable Not Feedstock	0	0	6.5E-02	0	0	0	0
Primary Energy Renewable Total	0	0	6.9E-02	0	0	0	0
Secondary Non-renewable Fuel	0	0	5.2E-04	0	0	0	0
Primary Energy Non-renewable Material	0	0	5.7E-02	0	0	0	0
Primary Non-renewable Energy Not Feedstock	0	0	0.36	0	0	0	0
Primary Energy Non-renewable Total	0	0	0.42	0	0	0	0
Hazardous Waste Disposed	0	0	1.6E-05	0	0	0	0
Non-hazardous Waste Disposed	0	0	5.5E-02	0	0	0	0
Radioactive Waste Disposed	0	0	1.5E-17	0	0	0	0
Components For Reuse	0	0	0	0	0	0	0
Material For Recycling	0	0	5.8E-03	0	0	0	0
Material For Energy Recovery	0	0	6.9E-06	0	0	0	0
Exported Energy Electrical	0	0	0	0	0	0	0
Exported Energy Thermal	0	0	0	0	0	0	0

Page 10 of 14

Results Module C: End-of-life

Table 3 shows results for C1 demolish, C2 Transport C4 Disposal. C3 Waste Processing has no flows.

Table 3 C1 to C4 Impact & Inventory Results/Functional Unit

Table 3 C1 to C4 Impact & Inventory Results/Fun Result	C1	C2	C3	C4
Climate Change biogenic	-1.0E-05	-1.0E-05	0	-7.8E-07
Climate Change Iuluc (landuse)	4.6E-11	1.4E-09	0	7.1E-10
Climate Change fossil	3E-06	0.006	0	7.4E-03
Climate Change total	3E-06	0.006	0	7.4E-03
Stratospheric Ozone Depletion	2.3E-13	1.1E-13	0	1.1E-13
Photochemical Ozone Creation	2.2E-08	6.0E-05	0	7.5E-05
Acidification Potential	1.4E-08	5.1E-06	0	2.0E-04
Eutrophication Freshwater	3.3E-13	3.1E-10	0	3.4E-10
Eutrophication Marine	4.2E-09	9.5E-07	0	1.2E-06
Eutrophication Terrestrial	7.4E-09	3.4E-06	0	3.8E-06
Fossil Depletion	2.1E-06	7.5E-03	0	9.0E-03
Mineral and Metal Depletion	3.8E-09	4.0E-06	0	4.9E-06
Water Scarcity Depletion	1.6E-07	1.4E-06	0	1.6E-06
Net Fresh Water Use	0.00	0.01	0	0.01
Secondary Material	3.4E-07	2.2E-06	0	1.6E-06
Secondary Renewable Fuel	1.1E-07	5.1E-06	0	4.7E-06
Primary Renewable Material	1.4E-07	1.6E-03	0	2.0E-04
Primary Energy Renewable Not Feedstock	1.5E-05	2.0E-04	0	2.0E-04
Primary Energy Renewable Total	1.5E-05	1.8E-03	0	1.9E-03
Secondary Non-renewable Fuel	1.4E-08	4.8E-04	0	5.1E-04
Primary Energy Non-renewable Material	2.4E-06	0.04	0	0.04
Primary Non-renewable Energy Not Feedstock	4.3E-05	0.06	0	0.08
Primary Energy Non-renewable Total	4.6E-05	0.10	0	0.12
Hazardous Waste Disposed	7.1E-10	1.2E-05	0	1.5E-05
Non-hazardous Waste Disposed	1.4E-06	9.6E-05	0	1.0
Radioactive Waste Disposed	4.4E-21	8.5E-32	0	7.5E-32
Components For Reuse	0	0	0	0
Material For Recycling	1.5E-08	4.6E-06	0	4.5E-06
Material For Energy Recovery	2.9E-10	1.5E-07	0	1.6E-07
Exported Energy Electrical	0	0	0	0
Exported Energy Thermal	0	0	0	0

Page 11 of 14

Results Module D: Beyond System Boundaries

Table 4 has results for benefit and loads in D1 reuse and D2 recovery. D3 recycling has no flows.

Table 4 D1 to D3 Impact & Inventory Results/Functional Unit

Table 4 D1 to D3 Impact & Inventory Results/Functional Unit								
Result	D1	D2	D3					
Climate Change biogenic	-2.0E-04	-1.9E-4	0					
Climate Change Iuluc (landuse)	1.7E-07	2.4E-09	0					
Climate Change fossil	4.8E-02	0	0					
Climate Change total	4.8E-02	0	0					
Stratospheric Ozone Depletion	8.2E-10	5.9E-13	0					
Photochemical Ozone Creation	2.3E-04	1.2E-06	0					
Acidification Potential	1.0E-04	5.3E-07	0					
Eutrophication Freshwater	2.2E-09	1.2E-10	0					
Eutrophication Marine	2.4E-05	9.4E-08	0					
Eutrophication Terrestrial	5.8E-05	6.9E-07	0					
Fossil Depletion	2.4E-02	1.7E-04	0					
Mineral and Metal Depletion	1.8E-05	5.8E-08	0					
Water Scarcity Depletion	6.0E-04	1.8E-05	0					
Net Fresh Water Use	3.7	0.11	0					
Secondary Material	1.1E-03	0	0					
Secondary Renewable Fuel	3.8E-04	4.3E-05	0					
Primary Renewable Material	4.4E-05	3.0E-05	0					
Primary Energy Renewable Not Feedstock	6.0E-02	1.4E-04	0					
Primary Energy Renewable Total	6.0E-02	1.7E-04	0					
Secondary Non-renewable Fuel	2.9E-04	7.7E-06	0					
Primary Energy Non-renewable Material	4.5E-02	0	0					
Primary Non-renewable Energy Not Feedstock	0.35	3.1E-03	0					
Primary Energy Non-renewable Total	0.42	3.1E-03	0					
Hazardous Waste Disposed	1.4E-05	1.9E-07	0					
Non-hazardous Waste Disposed	7.3E-03	2.0E-05	0					
Radioactive Waste Disposed	1.6E-17	4.9E-21	0					
Components For Reuse	0	0	0					
Material For Recycling	1.9E-04	1.6E-05	0					
Material For Energy Recovery	7.3E-06	6.5E-09	0					
Exported Energy Electrical	0	0	0					
Exported Energy Thermal	0	0	0					

Page 12 of 14

Interpretation Cradle to Gate A1 to A3

The first interpretation section discusses product results cradle to gate A1 to A3.

Figure 3 charts such mass versus EE/kg. It shows highest sensitivity to the base mix and least sensitivity to sand content.

The proprietary base mix was significantly more energy intensive than others.

Figure 4 charts mass versus GWP/kg product. It shows highest sensitivity to the proprietary Base mix and least sensitivity to sand content.

The base mix, hydrated lime and Portland cement components were significantly more CO_{2e} intensive than the sand.

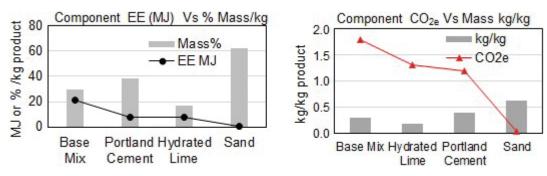


Figure 3 Mass Share Vs Embodied Energy MJ//kg A1-3 Figure 4 Mass Share Vs CO_{2e} kg/kg A1-3

Interpretation Cradle to Grave and Beyond the System Boundary A1 to D3

The second interpretation section discusses product results cradle to grave and beyond A1 to D3. With product lasting beyond 60-years.

Figure 5 shows highest GWP A1-A3 and insignificant A4 to C4.

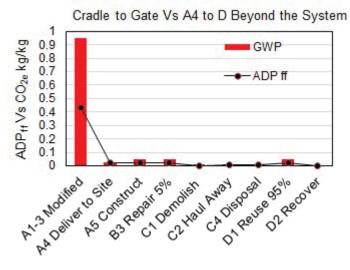


Figure 5 GWP A1 to D3/kg Functional Unit

Page 13 of 14

References

- [1] EN 15804:2012+A2:2019 Sustainability of construction works Environmental product declarations Core rules for the product category of construction products.
- [2] GreenTag[™] 2023 EPD Program, Product Category Rules https://www.globalgreentag.com/epd-program.html Sub-PCR UCM:2023 Unreinforced Concrete Mixtures and Additives
- [3] ISO 14025:2010 Environmental labels and declarations Type III environmental declarations Principles and procedures.
- [4] ISO14044:2006 Environmental management Life cycle assessment Requirements and guidelines.
- [5] ISO 15686-2:2012 Buildings and constructed assets Service life planning Part 2: Service life prediction procedures.
- [6] ISO 15686-8:2008 Buildings and constructed assets Service-life planning Part 8: Reference service life and service-life estimation.
- [7] IPCC 2013, Global Warming Potential 100-year, IPCC Fifth Assessment Report Climate Change.
- [8] WMO 2014, Ozone Depletion Potentials for Steady-state, Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project Report No. 55, 2014.
- [9] Van Zelm, R., Huijbregts, M., Hollander, H., Jaarsveld, H., Sauter, F., Struijs, J., Wijnen, H., Van de meent, D. 2008, European characterization factors for human health damage of PM10 and ozone in life cycle impact assessment, J O Atmospheric Environment 42(3):441-453, as applied in ReCiPe LOTOS-EUROS. DOI: 10.1016/j.atmosenv.2007.09.072
- [10] Seppälä, J., Posch, M., Johansson, M. and Hettelingh, J-P. 2006 Country-dependent Characterisation Factors for Acidification and Terrestrial Eutrophication Based on Accumulated Exceedance as an Impact Category Indicator, T Int J O LCA 11(6):403-416 Nov 2006 DOI:10.1065/lca2005.06.215
- [11] Posch, M., Seppälä, J., Hettelingh, J-P., and Johansson, M., (2008) The role of atmospheric dispersion models and ecosystem sensitivity in the determination of characterisation factors for acidifying and eutrophying emissions in LCIA, Sept 2008, I J of Life Cycle Assessment 13(6):477-486., DOI:10.1007/s11367-008-0025-9
- [12] Struijs, J., Beusen, A., van Jaarsveld, H. & Huijbregts, M.A.J. (2009b). Aquatic Eutrophication. Ch 6 in: Goedkoop, M., Heijungs, R., Huijbregts, M.A.J., De Schryver, A., Struijs, J., Van Zelm, R. (2009). ReCiPe 2008 A life cycle impact assessment method which comprises harmonised category indicators at the midpoint and the endpoint level. Report I: Characterisation factors, 1st Ed.
- [13] CML-IA V4.1 LCA methodology, 2002, October 2012, CML University of Leiden, Netherlands.
- [14] Guinée et al., 2002, and van Oers et al., 2002 CML LCA methodology 2002a, Institute of Environmental Sciences (CML), Faculty of Science, University of Leiden, Netherlands.
- [15] Boulay, A-M., Bare, J., Benini, L., Berger, M., Lathuilliere, M., Manzardo, A., Margni, M., Motoshita, M., Núñez, M., Pastor, A., Ridoutt, B., Oki, T., Worbe, S., Pfister, S. (2018). The WULCA consensus characterization model for water scarcity footprints: assessing impacts of water consumption based on available water remaining (AWARE). I J of LCA. 23. 1-11. 10.1007/s11367-017-1333-8.

Bibliography

Ciroth A., Hildenbrand J., Zamagni A. & Foster C., 2015, Data Review Criteria. Annex A: LCI Dataset Review Criteria, 10.13140/RG.2.1.2383.4485 UN EP Life Cycle Initiative

EN ISO 14024:2000, Environmental labels and declarations - Type I environmental labelling -Principles and procedures (ISO 14024:1999).

EN ISO 14040:2006, Environmental management - Life cycle assessment - Principles and framework (ISO14040:2006).

EN 15643-1:2010, Sustainability of construction works - Sustainability assessment of buildings - Part 1: General framework.

EN 15643-2, Sustainability of construction works - Assessment of buildings - Part 2: Framework for the assessment of environmental performance.

EN 16449, Wood and wood-based products - Calculation of the biogenic carbon content of wood and conversion to carbon dioxide.

ISO 21930:2007 Sustainability in building construction - Environmental declaration of building products.

ISO 21931-1:2010, Sustainability in building construction - Framework for methods of assessment of the environmental performance of construction works - Part 1: Buildings.

s Page 14 of 14